
Algebraic Geometry Lecture 12 – Elliptic Curves

Duc Khiem Huynh

Motivation: The simplest form of Diophantine equation is a polynomial in one
variable:

(1) anx
n + an−1x

n−1 + . . .+ a1x+ a0 = 0, ai ∈ Z.
We may ask

(i) Are there solutions in integers?

(ii) Are there solutions in rational numbers?

(iii) Are there infinitely many solutions in integers?

(iv) Are there infinitely many solutions in rational numbers?

We know there are at most n solutions to the equation, and we know which
rational numbers to check thanks to...

Gauss’ lemma. If p/q is a rational solution to (1) with p and q coprime then
q | an and q | a0.

Now consider Diophantine equations in two variables:

(2) f(x, y) = 0.

The set of real solutions to (2) form a curve in the x-y plane called an algebraic
curve. The difficulty of solving the equation increases with the degree of the poly-
nomial involved.

Linear equations These can be written

ax+ by + c = 0

for a, b, c ∈ Z. Such an equation always has infinitely many rational solutions.
Using Bézout’s identity there are no integer solutions if hcf(a, b) - c, and infinitely
many solutions otherwise.

Quadratic equations Graphs of these equations are conic sections (named as such
since they are formed by intersecting a plane with a cone). If there is a rational
solution then there are infinitely many. Complete sets of solutions can be described
(very easily) using geometry.

The next hardest case is cubic equations. In contrast to linear and quadratic
solutions the rational and integer solutions to cubics are not yet completely under-
stood. We do have:

Siegel’s theorem (1920). A cubic equation has only finitely many integer solu-
tions.
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Baker–Coates theorem (1970s). There is an explicit upper bound for the largest
solution in terms of the coefficients of the polynomial.

Using a change of variables a general cubic equation in two variables can be
written as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

which is known as the general Weierstrass form. If the characteristic of the field we
are working over is not 2 then this can be further simplified to

C : y2 = x3 + ax2 + bx+ c.

Such a curve is called an elliptic curve. The name comes from the fact that the arc
length of an ellipse is computed using

y =
√
f(x)

for a cubic polynomial f .

More specifically an elliptic curve is a non-singular curve - i.e. it has three distinct
roots. Equivalently the discriminant

∆ = −16(4b3 + 27c2)

is non-zero.

If the coefficients of f(x) = x3 + ax2 + bx+ c are rational numbers then f must
have at least one real root by the intermediate value theorem. So we can write

f(x) = (x− α)(x2 + βx+ γ).

If α is the only real root then f will only intersect the x-axis once, whereas if it has
three real roots it will be made up of two parts. The curve on the right has one
real root, while the one on the left has three:
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Let F (x, y) = y2 − f(x). So

∂F

∂x
= −f ′(x)

∂F

∂y
= 2y.

The curve is singular if there exists a point (x0, y0) such that F (x0, y0) = 0 and
both partial derivatives simultaneously vanish. So:

y0 = 0, f(x0) = 0, f ′(x0) = 0.

Thus f and f ′ have a common root x0, so x0 is a double root of f .

Conversely if f has a double root x0 then (x0, 0) will be a singular point on
C. If the root has multiplicity 2 then the curve will intersect itself, while if it has
multiplicity 3 then the curve will have a cusp:

A cusp on C : y2 − x3 = 0.
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Given a non-singular curve we can define the addition of two points on C geo-
metrically:

Using this notion of addition on the rational points on C forms an abelian group
denoted here as Γ = C(Q).

Mordell’s theorem. The group of rational points on a non-singular cubic is
finitely generated.

Γ is isomorphic to a direct sum of infinite cyclic groups and finite cyclic groups
of prime power orders:

Γ ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
r times

⊕Zp
ν1
1
⊕ . . .⊕ Zpνss

∼= Zr ⊕z.

The number r is called the rank of C. z is the torsion group. Γ is finite if and only
if its rank is zero.

Natural question: Given an elliptic curve how can we find its generating set? At
present no one knows a procedure which is guaranteed to work for all curves.

To any elliptic curve E we can attach an L-function L. Then we have:

Birch–Swinnerton-Dyer conjecture.

ords=1 L(E, s) = rank(E).
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Height of a rational number

Let x = p/q ∈ Q with (p, q) = 1. Then the height of x is defined by

H(x) = max{|p|, |q|}.
It can be thought of as a measurement of how “complicated” a rational number is.
It is useful because we have:

The finiteness property of height: The set of all rational numbers whose height
is less than some fixed number is finite.

Given an elliptic curve C and a point P = (x, y) ∈ C(Q) we define

H(P ) = H(x)

h(P ) = logH(P ).

Descent theorem. Let Γ be an abelian group and suppose that there is a function
h : Γ→ [0,∞) with

(i) for every M ∈ R the set {P ∈ Γ | h(P ) 6M} is finite;

(ii) for every P0 ∈ Γ there is a constant K0 such that

h(P + P0) 6 2h(P ) +K0

for every P ∈ Γ;

(iii) h(2P ) > 4h(P )−K for some constant K and every P ∈ Γ;

(iv) the subgroup 2Γ has finite index in Γ.

Then Γ is finitely generated.

Sketch proof. Take a representative for each coset of 2Γ in Γ. There are finitely
many of them, say n. Denote them Q1, . . . , Qn. So for any P ∈ Γ there is an index
i1 such that

P −Qi1 ∈ 2Γ.
So P −Qi1 = 2P1 for some P1 ∈ Γ. Repeat this process with P1 and so on:

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

...
Pm−1 −Qim = 2Pm.

The basic idea of the proof is that each Pi is more or less equal to 2Pi+1 and the
height h(Pi+1) is about 1

4h(Pi) by (ii). So the sequence of points P1, P2, . . . should
have decreasing height. Eventually they will end up in a set of points having
bounded height, then by (i) the result follows. �

Mordell’s theorem is a corollary of the Descent theorem, all that is left to show
is that the height function we defined satisfies all the hypotheses of the Descent
theorem.


